
Firmware lower-level discrimination and compression applied to streaming
x-ray photon correlation spectroscopy area-detector data

T. Madden,1, a) P. Fernandez,1 P. Jemian,1 S. Narayanan,1 A. R. Sandy,1 M. Sikorski,1 M. Sprung,1, b) and J.
Weizeorwick1

X-Ray Science Division, Argonne National Laboratory,
9700 S. Cass Ave., Argonne, IL 60439 USA

(Dated: 21 April 2010)

We present a data acquisition system to perform on-the-fly background subtraction and lower-level discrimina-
tion compression of streaming x-ray photon correlation spectroscopy (XPCS) data from a fast charge-coupled
device (CCD) area detector. The system is built using a commercial frame grabber with a built-in field-
programmable gate array (FPGA). The system is capable of continuously processing 60 CCD frames per
second each consisting of 1,024 × 1,024 pixels with up to xx photon hits per frame.

PACS numbers: Valid PACS appear here
Keywords: x-ray photon correlation spectroscopy (XPCS), x-ray intensity fluctuation spectroscopy (XIFS),
field-programmable gate array (FPGA)

I. INTRODUCTION

X-ray photon correlation spectroscopy (XPCS) per-
formed with hard x-rays (E >∼ 7 keV, where E is the
x-ray energy) has emerged as a powerful technique for
characterizing the equilibrium or steady-state dynamics
of condensed matter on length scales shorter than can
be achieved with optical techniques and on longer time
scales than can be achieved via neutron scattering. Even
on optically accessible length scales, opaque and metallic
samples are readily studied, providing new opportunities
for studies of colloidal and other soft matter systems.
Several recent review articles? ? ? provide summaries of
the scientific impact of the technique and the mechanics
of performing such experiments.

A key factor enabling XPCS’s recent significance has
been the application of direct-detection area detectors
to problems of interest—so-called multispeckle XPCS—
because even at a third generation synchrotron source
like the Advanced Photon Source (APS), XPCS experi-
ments are brilliance limited. Area detectors allow x-ray
speckle data to be simultaneously collected at equivalent
wave-vector transfers (Q’s) permitting averaging of the
auto-correlation functions thereby improving the signal-
to-noise ratio (SNR) in an experiment. Simultaneously,
area detectors collect data over a span of different wave-
vectors greatly increasing the efficiency of such exper-
iments. Despite recent successes, however, the use of
such detectors remains challenging both because of the
limited availability of suitable high-speed detectors and
because of the need to gather, manage and reduce data
at increasingly higher frame rates over increasingly long
measurement durations. This paper addresses the second
issue, namely development of a system to compress x-ray-
speckle data on-the-fly so that XPCS-suitable detectors

a)Electronic mail: tmadden@aps.anl.gov
b)Current address:Petra-III, DESY, Hamburg, Germany

can be run as fast as possible for as long as possible in
an operationally-sensible manner.

As a specific example, we consider recent multi-speckle
XPCS measurements that were performed at our beam-
line (8-ID) at the Advanced Photon Source (APS). Over
a very narrow temperature range, a dense colloidal sus-
pension in a binary mixture was found to display novel
repulsive- and attractive-glass behavior with an unusual
transition between these two phases? . The complex
phase behavior was unraveled via a combination of small-
angle x-ray scattering (SAXS) and XPCS measurements.
The dynamics (XPCS) measurements required collecting
instantaneous speckle patterns at 60 frames per second
(fps) over collection periods extending to 1,000 seconds.
Intensity-intensity time correlations, calculated accord-
ing to

g2(Q,∆t) =
〈I(Q, t)I(Q, t+ ∆t)〉t

〈I(Q, t)〉2t
,

where ∆t is the delay time and I(Q, t) is the intensity
at wave-vector Q and time t, revealed a distinct 2-step
decay of the correlation functions in the repulsive-glass
phase followed by a fully arrested correlation function in
the attractive-glass phase. In between these 2 phases, the
time autocorrelation functions exhibited a very unusual
logarithmic intensity decay. The unusual dynamic prop-
erties of this system, spanning nearly 5 decades in delay
time, could not have been discovered and measured with-
out an area detector running continuously at high frame
rates over extended collection periods.

Despite the evident scientific need, the measurements
described above are not operationally-sustainable with-
out the developments described below. The detector
used for the above measurements? has 1,024 × 1,024
14-µm-square pixels and outputs 2 bytes of data per
pixel. Without compression, a single time sequence as
described above would require more than 120 gigabytes
(GB) of storage. Since, in the example above, 100’s of
time sequences were required to establish and confirm

2

the phase diagram of the system, disk space and data-
reduction bandwidth would be rapidly exhausted. A key
realization is that i) we use direct-detection CCD’s for
XPCS so the signal above the background (dark noise) is
relatively high meaning individual photons can be distin-
guished and ii) the scattered signal is weak so the number
of recorded photons per frame is relatively small. Thus,
each frame can be compressed by a significant amount—
typically xx%.

During the first iteration of software development for
the camera? , the frames were accumulated in computer
memory and then compressed and written to disk when
the memory was full. This allowed the camera to run at
full speed (60 fps) but only accumulate ≈ 1,000 frames or
3 decades in delay times. A second iteration of high-level
software (C++) development performed compression and
wrote the data to disk on-the-fly. But even with a rel-
atively powerful workstation computer dedicated to this
task, on-the-fly compression performed with this software
was unable to process 60 fps so the short-time dynamic
range of the detector was limited. As such, we were
led to consider firmware thresholding and compression
of rapidly streaming multi-speckle XPCS data.

The remainder of this paper describes the design, im-
plementation and performance of this system. We used a
field-programmable gate array (FPGA) hosted on a com-
mercial frame grabber to realize live lower-level discrim-
ination (LLD) and compression of multi-speckle XPCS
data. The output of the system is a series of highly-
compressed data frames each consisting of a listing of
intensities above a user-determined threshold and their
locations on the CCD sensor. Somewhat analogous work
has been described recently? but though the frame rate
was significantly higher than for our detector, the mean
number of events per frame was much smaller. Refer-
ence ? discusses direct-detection CCD’s, dark noise
and photon identification in the context of multi-speckle
XPCS measurements.

II. SYSTEM DESIGN

A schematic overview of our multi-speckle real-time
compression system is shown in Fig. 1. It consists of a fast
area detector? , a signal translator (not shown) that con-
verts the low-voltage differential signaling (LVDS) signal
of the detector to Camera Link, a frame grabber and a
host workstation with fast local storage. Aside from the
detector, the frame grabber is the key component in the
system. It is a Dalsa Anaconda PCI-X frame grabber
with an on-board Xilinx Virtex-Pro XC2VP20 FPGA.
Solid arrows indicate data flow. The arrow heads indi-
cate the direction of data flow and the width of the arrow
is proportional to the data rate. Dashed arrows indicate
the control interface for the system which has been de-
veloped under the EPICS areaDetector? framework.

The key step in the system that reduces the data flow
is compression which is accomplished via implementation

Beamline	
Controls	
Computer	

Storage	
Fast	
CCD	

Controls	
Data	

areaDetector	

areaDetector	

Acquisi7on	
Computer	

Compression	
(FPGA)	

FIG. 1. Schematic representation of the data flow from de-
tector to disk.

of an appropriate LLD? in the FPGA. Briefly, as each
frame is streamed through the FPGA, pixels are retained
if they equal or exceed a defined LLD value and discarded
otherwise. The LLD is specified on a pixel-by-pixel basis
according to the following equation:

THRESHOLD(i, j) = C + DKAVE(i, j) + αDKRMS(i, j),
(1)

where (i, j) are pixel indices, C is a pixel-independent
constant threshold or offset value, DKAVE is the pixel-
dependent value of the average dark signal, and DKRMS is
the pixel-dependent value of the root-mean-square (rms)
of the dark signal multiplied by a scaling factor β. In
practice, the average dark value is first subtracted from
all incoming data frames and then the dark-subtracted
frames are compared to the LLD defined in Eqn. 1 with
DKAVE(i, j) = 0.

The LLD array can be created and updated on-the-fly
in the FPGA on an as-needed basis. Figure 2 illustrates
the procedure and the subsequent data compression. If
only a constant LLD is required, then a LLD value spec-
ified by the user on a control screen is loaded into the
FPGA. If, as is more typically the case, the LLD in-
cludes dark subtraction and a linear combination of a
constant and the rms dark frame then the procedure is
as follows.

1. The user specifies how many dark frames, NAVG
DARK,

should be collected to determine the average dark
signal. NAVG

DARK dark frames are accumulated and
recursively averaged and then stored on disk.

3

Specify
N*

DARK

Acquire NDARK
frames and
compute DKAVE
and DKRMS

Specify frame
packing factor

Specify
lower-level
discriminator
(LLD)

Specify NDATA

Store DKAVE and
DKRMS

Acquire data
frame

× NDATA

User FPGA/Frame Grabber

Pixels exceed
LLD?

Store
pixels

Y

Discard
pixels

N

Process
compressed
data

Number of
frames

exceeds
NDATA?

Y

N

FIG. 2. Schematic of dark and data acquisition processing
steps. For simplicity, the flow chart shows the number of dark
frames being the same for the average and rms determination,
but this need not be the case.

2. The user specifies how many dark frames, NRMS
DARK,

should be collected to determine the rms dark sig-
nal. (In practice, we use NRMS

DARK = NAVG
DARK ≡

NDARK.) NRMS
DARK dark frames are accumulated

and, using the mean dark frame determined in
Step 1, the mean absolute deviation (MAD) is re-
cursively determined and stored on disk. (The
MAD is more easily calculated in the FPGA than
the variance.) Provided that the variance in the
dark signal is well approximated by a normal dis-
tribution, which we will show below to be the case
for the detectors we use, then the standard devia-
tion or rms is given by

√
(π/2)MAD.

3. The user specifies the frame packing ratio. Within

a continuous sequence of data acquisition, the
frame grabber requires a fixed frame size so the
FPGA can not output variably-sized compressed
data frames to the frame grabber. Moreover, it is
inconvenient to constantly change the frame buffer
size in the image grabber as signal levels change.
Instead, the FPGA packs the user-specified integer
number, Npack, of compressed frames into a single
uncompressed frame and then passes the packed
frames to the frame grabber. This procedure re-
duces the rate of data flow from the frame grabber
to the computer bus by Npack×. Typical packing
ratios used in our experiments are 4 or 8 or 16.

4. The user specifies the LLD according to Eqn. 1.

Steps 1–4 need only be repeated occasionally There-
after, the number of frames, NDATA to accumulate in a
sequence is specified and the detector accumulates com-
pressed frames and writes them to local or network-
attached storage.

III. FPGA SYSTEM ARCHITECTURE

In Fig. 3 is a diagram of the hardware layout of the
FPGA circuitry the frame grabber The FPGA is con-
nected by 64 bit wide busses to two banks of Dynamic
RAM (DDR) and two banks of Static RAM (SRAM).
While the SRAM provides random access memory to the
FPGA for processing images, the DDRs are designed for
high speed block transfers and are not intended for ran-
dom access. Because all busses to and from memory are
64 bits wide, four 16-bit pixels are processed at once.
Raw image data from the camera is transferred to the
FPGA over a 64 bit buss, while the FPGA sends pro-
cessed data over a 64 bit buss to the CPU (via the PCI
buss on the computer). The memory banks are needed
for storing images to be used in dark subtraction, image
accumulation and averaging, and compression. In our
current implementation, only the DDR memory is used.
As shown in the figure 64 bit busses link the FPGA to
the camera interface and host computer’s PCI buss for
transfer to the host CPU.

Figure 4 shows a detailed view of the FPGA firmware
design and how it connects to the hardware on the frame
grabber. Each DDR bank is read and written in blocks.
These blocks are typically 64 64-bit words, but can be set
to arbitrary sizes based on the size of the images from the
camera. Transfer logic controls the block transfers to and
from the DDR banks. First-In-First-Out (FIFO) memo-
ries convert the discreet blocks of data from the DDR to
continuous data streams that can be synchronized with
camera data and data from the second memory bank. It
is essential that data streams from memories and cam-
era be properly synchronized so computation such as im-
age averaging or dark subtraction can be done correctly.
Note that each DDR bank features two FIFOs for read-
ing memory to the FPGA and one FIFO for writing back

4

DDR2 SRAM2

Xilinx
Spartan
FPGA

64 bit 64 bit

Data
from

Camera
Data to

CPU

64 bit 64 bit

DDR1 SRAM1

64 bit 64 bit

FIG. 3. Block diagram of FPGA architecture residing on
Coreco Frame Grabber. Xilinx FPGA receives data from
camera, processes data, then sends data to CPU. FPGA has
access to DDR and SRAM for storing images. All busses are
64 bits wide and send 4 pixels at a time

the Memory. The purpose of the extra readout-FIFO is
give the DDR a second data stream for reading out two
separate images from the DDR. In principle, any num-
ber of FIFOs can be associated with a DDR to create
the functionality of a multi-port RAM, or several DDR
banks. One application of using multiple data streams
from a DDR is in processing images with 32 bit preci-
sion. As data from the camera arrives in 64 bit words
containing 4 pixels, 128 bit data words can be read out
of the DDRs using multiple FIFOs representing four 32-
bit pixels. This is necessary for accurate computation of
image mean or standard deviations.

The Math Functions block in Figure 4 assigns a time
stamp to each incoming image. The purpose of the time
stamp is to record when the image was acquired. When
performing XPCS experiments it is desired to measure
the properties of a sample as they change with time.
Also, time stamps can be used to detect missed frames,
and hence incomplete datasets. The time stamp is a 48
bit binary number derived from a simple digital counter
clocked at 132MHz. The C++ software driver converts
the time stamp into microseconds. A second time stamp
is generated by the software driver of the commercial
frame grabber. In applications where the FPGA is not
used for real time processing, the software time stamp is
used. Additionally, the Math Functions block performs
dark subtraction, image mean and mean absolute devia-
tion.

Processing four pixels at once, the Compression Logic
applies a lower level discriminator to each pixel, in which
a threshold value is subtracted from each pixel value and
the result is compared to zero, and stores the pixel value
and its location in the image to a register. Originally the
plan was to store one pixel value of 16 bits with one pixel
location of 24 bits. Because a 36 bit data record does not

FI
FO

FI
FO

FI
FO

Transfer Logic

DDR
RAM

FI
FO

FI
FO

FI
FO

Transfer Logic

DDR
RAM

Data Synchronization Logic

FI
FO

FI
FO

Raw Data
from

Camera

Processed
Data to

CPU

Math Functions Compression
Logic

FIFO

FIFO

Compressed
Data

Formatting
Logic

BUSS BUSS

FIG. 4. Block diagram of FPGA firmware. lots of fifos to con-
fert DDR block into continuous data streams. These streams
must be as such to avoid scrambling th images. Logic for
math compression. Compression FIFOs needed because com-
pression alters the overall data rate

fit nicely into 64-bit DDR RAMs, it was decided to store a
single 24-bit location with two pixel values, representing
two adjacent pixels. Therefore, the 56 bit data record is
nicely stored into the 64 bit word with 8 extra bits for
future development.

Because the process of image compression lowers the
overall data rate FIFOS, called ”compression FIFOs”,
store and transfer compressed data from the Compres-
sion Logic to the Compressed Data Formatter. The Com-
pressed Data Formatter formats and stores compressed
data to the DDR memory for subsequent readout to the
host CPU. Compressed data may be of any arbitrary size,
depending on the actual information in the images. Be-
cause the commercial frame grabber is designed to handle
images of fixed size, it is necessary to stuff compressed
data into blocks the same size as the images coming from
the camera. For example, if the camera supp;lies images
of 1024x 1024 16-bit pixels, or 2097152 bytes, the com-
pressed data must be sent to the host CPU in 2097152-
byte blocks. To accomplish this, a compression rate Cr

is set to an integer from 2 to 16 by the user. The com-
pression rate determines how many compressed images
from the camera are stuffed into a single 2097152 byte
block. The Data Formatter formats Cr compressed im-
ages and appropriate header data containing time stamps
and various FPGA settings into the 2097152 byte block.
The frame grabber is programmed to reduce the frame
rate by Cr. If Cr is set to 4, and the camera runs at 60fps,
the FPGA/grabber outputs 15fps of compressed data the
host CPU. If the raw images from the camera are sparse,
the compressed data frames may contain mostly empty
data records. In this case, the compression rate can be
set to a larger value.

5

IV. FPGA MATH ALGORITHMS

Mathematical computations done on the FPGA in-
clude recursively averaging N dark images, recursively
averaging N absolute offset images (for estimating stan-
dard deviation), and dark subtraction. Averaging is de-
fined as

Ī =
1

N

N−1∑
k=0

Ik (2)

.
To avoid storing N images the FPGA averages the

images recursively with the formula,

Īk = α ¯Ik−1 + βIraw (3)

. The coefficients α and β can be set arbitrarily, but are
generally set to α = 1 and β = 1

N . In this case, the
recursion is run N times to avoid blowing up to infin-
ity. Because the coefficients are stored as 16-bit integers,
with values from 0.0 to 1.0 represented as integers from 0
to 65536. If the number of images to average N is chosen
arbitrarily, truncation to 16 bits will add bias to the es-
timated the mean. The 16 bit truncated coefficient βint
is defined as

βint = round(65536 ∗ β) = round(
65536

N
) (4)

To assure that truncation of coefficients does not add bias
to the mean calculation we must set N such that

1. N is an integer.

2. 65536
N is an integer.

By setting N to a power of 2 we assure βint =
round(65536

N) = 65536
N , and add no bias to the mean esti-

mation.
Once an estimated mean dark image is obtained and

stored to memory, an estimate of standard deviation can
be obtained. A commonly used estimator of Standard
Deviation is defined as

σ =

√√√√ 1

N − 1

N−1∑
k=0

(Ik − Ī)2 (5)

. Note that estimating standard deviation requires a
square root operation, which is difficult to implement on
an FPGA. It is simpler to estimate standard deviaion by
calculating absolute mean deviation defined as

M̄ =
1

N

N−1∑
k=0

|Ik − Ī| (6)

.

In? it is shown that for a Gaussian process σ =√
pi
2 M. We assume Gaussian noise in the images, and

use the recursion

M̄k = αM̄k−1 + β|Iraw − Ī| (7)

to estimate standard deviation.The factor of
√

pi
2 is mul-

tiplied in the C software driver to convert to standard
deviation.To assure the recursive equations do not ac-
cumulate error 32-bit precision fixed point arithmetic is
used. Starting with 16-bit raw data and converting to
32-bit data requires twice as many reads and writes to
the DDR memories. Our experience is that the FPGA
can still process data fast enough to keep up with the
XPCS data collection.

To calculate the compression thresholds on a pixel-by-
pixel basis, a threshold image is defined as the mean dark
image plus some number s of standard deviations:

T = Ī + s

√
pi

2
M̄ + t, (8)

where t is a user defined scalar threshold added to all
pixels. It is especially useful when no mean dark im-
age Ī or mean absolute deviation image M̄ is acquired.
When the images are compressed, the threshold image
T is subtracted from the raw image, and all processed
pixels below zero are discarded. Processed pixels greater
then zero are stored in the compressed data records.

XXX Speed of busses in the FPGA and grabber

V. FPGA COMPILATION AND SOFTWARE CONTROL

The firmware was written in VHDL and compiled with
the Xilinx development tools into a bit file. When the
frame grabber is configured, the bit file is loaded to set
up the FPGA configuration. A C++ software driver was
written to control the frame grabber using the commer-
cial software API supplied by Dalsa. The driver is loaded
by EPICS. EPICS windows exist for controlling camera
and FPGA. Screen shot of the software interface is shown
in

The image viewer is Image J with a Java plug-in to
interface EPICS with ImageJ. for compressed data, the
viewer must decompress for viewing. A second decom-
pression Java plug-in allows viewing compressed data in
real time.

The FPGA control window allows the user to set the
following options:

1. Compression Rate

2. Scalar Threshold, applied to all pixels

3. Number of images to average

4. Number of standard deviations to set pixel-by-pixel
threshold

6

FIG. 5. Screen shot of EPICS user interface for FPGA-based
system. Note windows for camera control, FPGA control,
EPICS text shell, File saving, and Image viewer

5. Acquisition Mode

Describe FPGA architecture and development.
Describe how FPGA is controlled via higher level soft-

ware.
Itemize data acquisition modes.

VI. SYSTEM PERFORMANCE

Describe performance of the system.

VII. FPGA VERSUS GRAPHICS PROCESSING UNIT

GPU versus FPGA. Grahpics Processing Units (GPU)
originally designed for handing graphics on PCs are in-
creasingly being used for scientific data processing. We
plan to implement real time processing on a GPU for
XPCS data. We do not feel the GPU will replace the
FPGA or vice versa. As data comes from the camera it
must be transferred over the PCI buss for prodcessing,
then over the PCI buss again to the CPU. The FPGA
processes and comrpesses data before it reaches the PCI
buss. In thus way only compressed data is trransferred.
The use of a GPU can FPGA are complimentary: the
FPGA can compress the data and do some modest cal-
culations while the GPU can perform complex calcula-
tions on compressed data. In thus way one can have the
advantages of both technologies. As GPUs become more
integrated with the CPU, they will become even more
useful for scientific data processing. However, the FPGA
occupies a special niche for data collection for recuding
the data rate before it is transferred into the PC’s buss.

Itemize properties of dark—mean and variance—and
how variance is approximated in the FPGA.

fig_1-eps-converted-to.pdf

FIG. 6. Dark image and dark mean and variance.

fig_1-eps-converted-to.pdf

FIG. 7. Raw image and different thresholding.

Itemize properties of incoming data and processed data

Results (and graphs) of compression factors and max
frame rates versus compression factors.

VIII. CONCLUSIONS

We have successfully implemented an FPGA-based
system for on-the-fly thresholding and compression of
rapidly streaming multi-speckle XPCS data. The sys-
tem allows us to acquire and compress 1 megapixel CCD
frames at ≥ 60 fps allowing XPCS to measure delay
times spanning at least 5 orders of magnitude. Future
work will focus on extending the current 32-bit archi-
tecture to 64-bit architecture and physically-separating
the FPGA unit from the frame grabber. The former
will allow us to support newly emerging faster XPCS-
suitable detectors? and the latter will provide more flex-
ibility with respect to choice of frame grabbers while, at
the same time, allowing a stable FPGA development en-
vironment. We are also considering implementing so-
called “droplet” algorithms? or performing multi-tau
correlations directly in the FPGA? . A drawback of
the latter though is that it would restrict its applica-
tion to only stationary systems despite the significant
progress that has been realized lately with respect to
non-equilibrium and intermittent dynamics? ? ? . In this
regard, a more promising future development is to marry
the pre-processing described in this paper, with correla-
tions performed via high-performance computing (HPC).
The inherently parallel nature of multi-speckle XPCS
suggest that firmware thresholding combined with HPC
can yield autocorrelation functions in real time.

7

ACKNOWLEDGMENTS

M. Sikorski acknowledges support from a Laboratory
Directed Research and Development (LDRD) project.

Use of the Advanced Photon Source at Argonne National
Laboratory was supported by the U. S. Department of
Energy, Office of Science, Office of Basic Energy Sciences,
under Contract No. DE-AC02-06CH11357.

